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rostate cancer is a leading cause of illness and death among

 

men in the United States and Western Europe. Autopsy series have revealed
small prostatic carcinomas in up to 29 percent of men 30 to 40 years of age and

64 percent of men 60 to 70 years of age.

 

1

 

 Moreover, the risk of prostate cancer is 1 in
6 and the risk of death due to metastatic prostate cancer is 1 in 30.

 

2

 

 (Fig. 1 shows mul-
tiple foci of prostate cancer.) With widespread screening for prostate-specific antigen
(PSA) and digital rectal examination, as well as early treatment of localized prostate can-
cer, however, the age-adjusted rates of death due to prostate cancer have begun to de-
crease.

 

3,4

 

 In 2002, an estimated 189,000 men received a diagnosis of prostate cancer,
and there were an estimated 30,200 deaths due to prostate cancer.

 

2

 

Dietary factors, lifestyle-related factors, and androgens have long been recognized
as contributors to the risk of prostate cancer. During the past decade, molecular studies
have provided unexpected clues as to how prostate cancers arise and progress. The iden-
tification and characterization of genes associated with inherited susceptibility to pros-
tate cancer and of genes in prostate-cancer cells that tend to have somatic alterations
hint that infection or inflammation of the prostate contributes to the development of
prostate cancer. Newly recognized mechanisms by which environmental carcinogens
might promote the progression of prostate cancer and new insights into the way in which
androgen receptors modulate the phenotype of prostate-cancer cells have emerged. In
this article, we review recent discoveries in the genetics of prostate cancer and in the ac-
quired molecular defects that accumulate in prostatic-carcinoma cells.

In a study of the risk of cancer among 44,788 pairs of twins in Sweden, Denmark, and
Finland,
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 42 percent of cases of prostate cancer (95 percent confidence interval, 29 to
50 percent) were attributed to inheritance, with the remainder most likely attributable
to environmental factors. Epidemiologic evidence also supports a major contribution of
environmental factors to the development of prostate cancer. The incidence of prostate
cancer and mortality due to prostate cancer are high in the United States and Western
Europe, with the highest rates among black men in the United States, whereas lower
rates are more characteristic of Asia.

 

6

 

 The risk of prostate cancer among Asians increas-
es when they immigrate to North America — again implicating the environment and
lifestyle-related factors in causing prostate cancer in the United States.

 

7-9

 

carcinogens in the diet

 

The lifestyle-related factor that represents the most likely culprit in the promotion of
prostate cancer in the United States is diet. The typical U.S. diet is rich in animal fats and
meats and poor in fruits and vegetables. In the Health Professionals Follow-up Study, a

p
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prospective cohort study involving 51,529 men, in-
creased total fat intake, animal fat intake, and con-
sumption of red meat were associated with an
increased risk of prostate cancer.

 

10

 

 The level of
consumption of red meat was also correlated with
the risk of prostate cancer in the Physicians’ Health
Study

 

11

 

 and in a large cohort study in Hawaii.

 

12

 

 Al-
though the components of red meats that promote
prostate cancer have not been identified, when
meats are cooked at high temperatures or broiled
on charcoal grills, heterocyclic aromatic amine
and polycyclic aromatic hydrocarbon carcinogens
form.

 

13-16

 

 One such heterocyclic amine carcinogen,
2-amino-1-methyl-6-phenylimidazo[4,5-

 

b

 

]pyridine
(PhIP), causes prostate cancer when fed to rats.

 

17,18

 

dietary components that protect
against prostate cancer

 

Vegetables may protect against prostate cancer.

 

19

 

In the Physicians’ Health Study, high plasma levels
of the antioxidant carotenoid lycopene, resulting
from a high intake of tomatoes, have been associ-
ated with a reduced risk of prostate cancer.

 

20

 

 In a
recent clinical trial, men given tomato sauce–based
pasta dishes for three weeks before radical prosta-
tectomy had increased lycopene levels in the blood
and the prostate, decreased oxidative genomic dam-
age in leukocytes and prostate cells, and a reduction
in the serum PSA level.

 

21

 

 Other antioxidants, such
as vitamin E and selenium, may also reduce the risk
of prostate cancer.

 

22-24

 

 A large clinical trial of sup-
plementation with vitamin E and selenium to pre-
vent prostate cancer has just been initiated.

 

25

 

 High
intake of cruciferous vegetables containing the
chemoprotective isothiocyanate sulforaphane was
correlated with a diminished risk of prostate cancer
in a case–control study.

 

26

 

 Sulforaphane prevents
cancers in animal models by inducing the expres-
sion of carcinogen-detoxification enzymes that
limit the cell and genomic damage caused by carcin-
ogens.

 

27,28

 

 By increasing the expression of carcin-
ogen-detoxification enzymes, sulforaphane can also
act indirectly as an antioxidant.

 

29,30

 

Studies in twins that compare the concordant oc-
currence of prostate cancer in monozygotic twins
with that in dizygotic twins have consistently re-
vealed a stronger hereditary component in the risk

of prostate cancer than in any other type of cancer
in humans.

 

5,31-33

 

 In 1990, Steinberg et al. reported
that men with prostate cancer were more likely than
their spouses to report having an affected brother or
father and estimated that the presence of one, two,
or three affected family members increased the risk
of prostate cancer in first-degree relatives by a fac-
tor of 2, 5, and 11, respectively, whereas the risk
in a more distant relative was only marginally in-
creased.

 

34

 

 These findings have been confirmed by
other studies.

 

35-41

 

Complex segregation analyses have suggested
that rare autosomal dominant alleles account for a
substantial proportion of cases of inherited, early-
onset prostate cancer (defined as cancer occurring
before 55 years of age).

 

42-45

 

 In families with men in
whom prostate cancer is diagnosed at an older age,
an X-linked allele may be responsible.

 

46,47

 

 The first
molecular genetic study of familial prostate cancer
in which polymorphic markers were used identified
several regions of linkage; the chromosomal re-
gion 1q24–25, designated the locus of the heredi-
tary prostate cancer (

 

HPC1

 

) gene, has been the most
thoroughly investigated.

 

48

 

 Some analyses have con-
firmed a link between 

 

HPC1

 

 and prostate cancer,
but others have failed to detect an association.

 

49

 

 In
addition to 

 

HPC1,

 

 six other loci have received atten-
tion.

 

50-55

 

rnasel

 

The 

 

RNASEL

 

 gene encodes a widely expressed latent
endoribonuclease that participates in an interferon-
inducible RNA-decay pathway that is thought to
degrade viral and cellular RNA.

 

56-60

 

 

 

RNASEL

 

 has
been linked to 

 

HPC1

 

.

 

61

 

 In one family, four brothers
with prostate cancer carried a disabling mutation of

 

RNASEL,

 

 and in another family, four of six brothers
with prostate cancer carried a base substitution af-
fecting the 

 

RNASEL

 

 initiator methionine codon.

 

61

 

In preliminary population studies, the 

 

RNASEL

 

 allele
with a termination codon at amino acid position 265
was found in 0.54 percent of unaffected white men,
and the allele with the defective initiator methionine
codon was not detected in any unaffected men.

 

61

 

The 

 

RNASEL

 

 allele with a termination codon at ami-
no acid position 265 was also detected in 4.3 percent
of Finnish men with familial prostate cancer and
only 1.8 percent of control men.

 

62

 

 Another study
identified a mutant 

 

RNASEL

 

 allele, with a deletion at
codon 157, in an Ashkenazi Jewish population; this
allele was present in 6.9 percent of the men with

inherited prostate-cancer–

susceptibility genes
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prostate cancer and 2.9 percent of the elderly men
without prostate cancer.

 

63

 

 An increased risk of pros-
tate cancer was also associated with yet another
mutant 

 

RNASEL

 

 allele that encodes a less active en-
zyme.

 

64

 

 A single study failed to detect any associa-
tion between 

 

RNASEL

 

 alleles with inactivating mu-
tations and prostate cancer.

 

65

 

msr1

 

The macrophage-scavenger receptor 1 (

 

MSR1

 

) gene,
located at 8p22, has also emerged as a candidate
prostate-cancer–susceptibility gene.

 

66

 

 It encodes
subunits of a macrophage-scavenger receptor that
is capable of binding a variety of ligands, including
bacterial lipopolysaccharide and lipoteichoic acid,
and oxidized high-density lipoprotein and low-den-
sity lipoprotein in the serum.

 

67

 

 Germ-line 

 

MSR1

 

mutations have been linked to prostate cancer in
some families with hereditary prostate cancer, and
one mutant 

 

MSR1

 

 allele has been detected in ap-
proximately 3 percent of men with nonhereditary
prostate cancer but only 0.4 percent of unaffected
men (P=0.05).

 

66,68

 

 Expression of MSR1 appears to
be restricted to macrophages in the prostate that
are abundant at sites of inflammation.

 

ar, cyp17,

 

 and 

 

srd5a2

 

Polymorphic variants of three genes involved in an-
drogen action, the androgen-receptor (

 

AR

 

) gene, the
cytochrome P-450c17 (

 

CYP17

 

) gene, and the steroid-
5-

 

a

 

-reductase type II (

 

SRD5A2

 

) gene, have been im-
plicated in modifying the risk of prostate cancer in
genetic epidemiologic studies. In the case of 

 

AR,

 

which encodes the androgen receptor, polymor-
phic polyglutamine (CAG) repeats have been de-
scribed.

 

69

 

 Functional studies have suggested that
shorter polyglutamine repeats may be associated
with increased androgen-receptor transcriptional
transactivation activity.

 

70-73

 

 Black Americans, who
have a relatively high risk of prostate cancer, tend to
have shorter androgen-receptor polyglutamine re-
peats, whereas Asians, who have a relatively low risk
of prostate cancer, tend to have longer androgen-
receptor polyglutamine repeats. Several genetic
epidemiologic studies have shown a correlation be-
tween an increased risk of prostate cancer and the
presence of short androgen-receptor polyglutamine
repeats, but other studies have failed to detect such
a correlation.

 

74-80

 

 Polymorphic polyglycine (GGC)
repeats are also characteristic of 

 

AR

 

 and may also
influence the risk of prostate cancer.

 

76,79-81

 

CYP17

 

 encodes cytochrome P-450c17

 

a

 

, an en-
zyme that catalyzes key reactions in sex-steroid
biosynthesis. A variant 

 

CYP17

 

 allele has been sub-
jected to both population and genetic-linkage anal-
yses to determine its association with prostate can-
cer, with inconsistent results.

 

75,82-88

 

 However,
linkage data suggest that another variant 

 

CYP17

 

 al-
lele is associated with prostate cancer.

 

89

 

SRD5A2

 

 encodes the predominant isozyme of
5-

 

a

 

-reductase in the prostate, an enzyme that con-
verts testosterone to the more potent dihydrotestos-
terone. Two common polymorphic variant 

 

SRD5A2

 

alleles have been described.

 

90,91

 

 The alleles that en-
code enzymes with increased activity have been as-
sociated with an increased risk of prostate cancer
and with a poor prognosis for men with prostate
cancer.

 

90,92

 

 In addition to 

 

AR, CYP17,

 

 and 

 

SRD5A2,

 

polymorphic variants of a number of other genes
have been proposed as possible contributors to the
risk of prostate cancer.

 

93

 

genetic susceptibility to prostate cancer

 

As we have seen, the genetics of the prostate have
proved difficult to study. Prostate cancer, once gen-
erally diagnosed at an advanced stage in older men,
is now more often detected at an early stage in
younger men as a consequence of more widespread
screening for the disease. This trend toward earli-
er diagnosis of prostate cancer has most likely
changed the definition of a “case” of cancer, since
many men who would have qualified as controls in
previous genetic and epidemiologic studies are now
known to have prostate cancer as a result of PSA
screening. Despite these limitations, genetic studies
have provided remarkable clues to the causes of
prostate cancer. For example, in addition to the ex-

 

Figure 1 (facing page). Multiple Foci of Proliferative In-
flammatory Atrophy, High-Grade Prostatic Intraepithelial 
Neoplasia, and Prostatic Carcinoma in the Peripheral 
Zone of the Human Prostate.

 

Panel A is a photograph of a single slice of a prostate from 
a radical prostatectomy. The transition zone, where most 
(>90 percent) benign prostatic hyperplasia develops, 
and the peripheral zone, where most (>70 percent) pros-
tate cancer develops, are indicated. Areas with yellowish 
discoloration represent regions containing prostate can-
cer. Panel B is a low-magnification microscopical image 
of the region indicated in Panel A (hematoxylin and 
eosin). Panel C is a higher-magnification image of a 
prostate-cancer lesion (hematoxylin and eosin).
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pected role of androgens in facilitating the devel-
opment of prostate cancer, the possibility that viral
or bacterial infections might lead to prostate cancer
has been raised with the identification of 

 

RNASEL

 

and 

 

MSR1

 

 as familial prostate-cancer genes — an
insight that will profoundly affect future studies of
the etiology of prostate cancer and may ultimately
lead to new approaches to the prevention of prostate
cancer (Table 1).

 

61,66,67,94

 

At the time of diagnosis, prostate-cancer cells con-
tain many somatic mutations, gene deletions, gene
amplifications, chromosomal rearrangements, and
changes in DNA methylation (Fig. 2 and Table 2).
These alterations probably accumulate over a period
of several decades.

 

1

 

 The most commonly reported
chromosomal abnormalities appear to be gains at
7p, 7q, 8q, and Xq, and losses at 8p, 10q, 13q, and
16q.

 

95

 

 A striking heterogeneity in chromosomal

abnormalities has been seen in different cases, in
different lesions in the same case, and in different
areas within the same lesion. Additional somatic
genomic alterations appear to arise in association
with the progression of prostate cancer.

 

96-100

 

 Mu-
tations in the 

 

TP53

 

 gene, which are present in a mi-
nority of primary prostate cancers, may undergo
clonal selection in the process of progression to
metastatic prostate cancer.

 

101,102

 

gstp1

 

Hypermethylation of CpG island sequences encom-
passing the regulatory region of 

 

GSTP1,

 

 encoding
the 

 

p

 

-class glutathione 

 

S

 

-transferase (GSTP), may
link exposure to genome-damaging stress to in-
creased genomic instability during prostatic car-
cinogenesis.

 

103-106

 

 In the normal prostate epithe-
lium, GSTP1 is expressed in basal cells but not in
columnar secretory cells, although the enzyme may
be induced in columnar epithelial cells that are sub-
jected to genome-damaging stresses. In contrast,
the enzyme is rarely present in prostate-cancer cells.

somatic gene defects

in prostate cancer

 

* X denotes a nonsense mutation.

 

Table 1. Prostate-Cancer–Susceptibility Genes.

Gene Location Alterations* Phenotypic Consequences

 

RNASEL

 

1q24–25 Base substitutions leading to Met1Ile, Glu265X, 
and Arg462Gln alleles

Four-base deletion at codon 157 leading to 
premature protein truncation at codon 164

Encodes endoribonuclease that participates in 
an interferon-inducible 2',5'-oligoadenylate–
dependent RNA-decay pathway

 

RNaseL

 

¡/¡

 

 mice have diminished interferon-

 

a

 

 
antiviral activity

 

ELAC2

 

17p11 Base insertion leading to premature termination 
67 amino acids after codon 157; base 
substitutions leading to Arg781His, 
Ser217Leu, and Ala541Thr alleles

Unknown

 

MSR1

 

8p22 Base substitutions leading to Arg293X, 
Pro36Ala, Ser41Tyr, Val113Ala, Asp174Tyr, 
Gly369Ser, and His441Arg alleles

Encodes subunits of class A macrophage-
scavenger receptor

 

Msr-A

 

¡/¡

 

 mice have an increased sensitivity to 
serious infection with 

 

Listeria monocytogenes, 
Staphylococcus aureus, Escherichia coli,

 

 and 
herpes simplex virus type 1

 

AR

 

Xq11–12 Polymorphic polyglutamine (CAG)
and polyglycine (GGC) repeats

Encodes androgen receptor, an androgen-
dependent transcription factor

Different polymorphic alleles may be associated 
with different transcriptional transactivation 
activities

 

CYP17

 

10q24.3 Base substitution in transcriptional promoter 
(T˚C transition leading to new Sp1 
recognition site)

Encodes cytochrome P-450c17

 

a

 

, an enzyme
that catalyzes key reactions in sex-steroid 
biosynthesis

 

SRD5A2

 

2p23 Base substitutions leading to Val89Leu 
and Ala49Thr alleles

Encodes the predominant 5-

 

a

 

-reductase 
in the prostate, converts testosterone
to dihydrotestosterone
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In more than 90 percent of cases of prostate cancer,
the absence of GSTP1 in prostate-cancer cells can be
attributed to hypermethylation of the CpG island
sequences in 

 

GSTP1,

 

 a somatic change that pre-
vents the transcription of 

 

GSTP1

 

.

 

105

 

 The absence
of GSTP1 and hypermethylation of CpG island se-
quences of 

 

GSTP1 are also characteristic of cells in
lesions of prostatic intraepithelial neoplasia, which
are thought to be precursors of prostate cancer.107

Although cells carrying inactivated GSTP1 alleles
accumulate during the development of prostate can-
cer, GSTP1 does not appear to act as a tumor-sup-
pressor gene.105 Instead, GSTP1 probably serves
as a “caretaker” gene,108 defending prostate cells
against genomic damage mediated by carcinogens,
such as PhIP, found in well-done or charred meats,
or various oxidants, found at sites of inflammation
(Fig. 3).17,18,109 Cultured cells from a prostate-can-
cer line (LNCaP) that have been modified to express
GSTP1 form substantially fewer promutagenic
PhIP–DNA adducts on exposure to metabolically
activated PhIP than do unmodified LNCaP cells.109

GSTP1-expressing LNCaP prostate-cancer cells also
form fewer oxidized DNA bases on exposure to ox-
idant stresses than do unmodified LNCaP cells;
however, in response to oxidant stress, unmodified
LNCaP prostate-cancer cells survive better than do
LNCaP prostate-cancer cells that have been modi-
fied to express high levels of GSTP1 (unpublished
data). This curious tolerance to oxidative genomic
damage associated with the loss of the caretaker
function of GSTP1 may underlie the apparent pref-
erential growth of cells with inactivated GSTP1 al-
leles during carcinogenesis in the prostate.

nkx3.1
No “gatekeeper” genes for the development of pros-
tate cancer, analogous to the adenomatous polypo-
sis coli (APC) gene in colorectal cancer, have been
confidently identified.108 NKX3.1, located at 8p21,
encodes a prostate-specific homeobox gene that
is likely to be essential for normal prostate devel-
opment and is therefore a candidate gatekeeper
gene.110,111 NKX3.1 binds DNA and represses ex-
pression of the PSA gene.112,113 Mice carrying one or
two disrupted Nkx3.1 alleles manifest prostatic ep-
ithelial hyperplasia and dysplasia.114,115 In men, the
loss of 8p21 DNA sequences occurs early during
prostatic carcinogenesis, with 63 percent of lesions
of prostatic intraepithelial neoplasia, and more than
90 percent of prostate cancers, showing a loss of
heterozygosity at polymorphic 8p21 marker se-

quences.116 Although mapping studies have indi-
cated that NKX3.1 lies within a common region of
deletion at 8p21 in prostate cancer, molecular analy-
ses have not yet established NKX3.1 as a somatic tar-
get for inactivation during prostatic carcinogenesis
— principally because, although one of two NKX3.1
alleles is frequently deleted in prostate-cancer DNA,
somatic mutations have not been detected at the
remaining allele.117-119 Nonetheless, the loss of
NKX3.1 expression does appear to be related to the
progression of prostate cancer. One study found
that NKX3.1 was absent in 20 percent of lesions of
prostatic intraepithelial neoplasia, 6 percent of low-
stage prostate cancers, 22 percent of high-stage
prostate cancers, 34 percent of androgen-independ-
ent prostate cancers, and 78 percent of prostate-
cancer metastases.120

pten
The gene for phosphatase and tensin homologue
(PTEN), a tumor-suppressor gene encoding a phos-
phatase active against both proteins and lipid sub-
strates, is a common target for somatic alteration

Figure 2. The Molecular Pathogenesis of Prostate Cancer.
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during the progression of prostate cancer (Fig.
4).121-130 PTEN is present in normal epithelial cells
and in cells in prostatic intraepithelial neoplasia.131

In prostate cancers, the level of PTEN is frequently
reduced, particularly in cancers of a high grade or
stage.131 Furthermore, in prostate cancers that do
contain PTEN, a considerable heterogeneity in lev-
els, with regions that are devoid of PTEN, has been
described.131 In a study of prostate-cancer metas-
tases recovered at autopsy, somatic PTEN alterations
were more common than they are in primary pros-
tate cancers, and heterogeneity in the PTEN defects
in different metastatic deposits in the same patient
was also evident.129

Somatic allelic losses in both PTEN and NKX3.1
appear to be common in prostate cancers, but so-
matic alterations affecting the remaining alleles are
not frequent. Nonetheless, haploinsufficiency for
PTEN and NKX3.1 may promote abnormal prolifer-
ation of prostate cells. Although mice that are het-
erozygous for Nkx3.1 and mice that are heterozy-
gous for Pten display prostatic hyperplasia and
dysplasia, crossbreeding of these mice yields off-
spring that are heterozygous for Pten with zero or
one Nkx3.1 allele; in all these offspring, prostatic

intraepithelial neoplasia develops.114,132-134 The
mechanism by which PTEN might act as a tumor
suppressor in the prostate and elsewhere may in-
volve the inhibition of the phosphatidylinositol
3'-kinase–protein kinase B (PI3K–Akt) signaling
pathway that is essential for cell-cycle progression
and cell survival.135-138

cdkn1b
Reduced levels of p27, a cyclin-dependent kinase in-
hibitor encoded by the CDKN1B gene, also are com-
mon in prostate cancers, particularly in prostate
cancers with a poor prognosis.139-144 The basis for
the low p27 levels is unknown, although the somat-
ic loss of DNA sequences at 12p12–13, encompass-
ing CDKN1B, has been described in 23 percent of
localized prostate cancers, 30 percent of metastases
of prostate cancer in regional lymph nodes, and
47 percent of distant metastases of prostate can-
cer.145 Levels of p27 are suppressed by the PI3K–
Akt signaling pathway.136,138,146,147 By inhibiting
PI3K–Akt, PTEN can increase the levels of CDKN1B
messenger RNA and p27 protein.148 For this rea-
son, low p27 levels may be as much a result of the
loss of PTEN function as of CDKN1B alterations.

* TRAMP denotes transgenic mice with prostate cancer.

Table 2. Somatic Gene Alterations in Prostate Cancers.*

Gene Location Alterations Phenotypic Consequences

GSTP1 11q13 CpG island hypermethylation 
(decreased expression)

Encodes carcinogen-detoxification enzyme
Gstp1/2¡/¡ mice show increased skin tumorigenesis 

when exposed to topical carcinogen

NKX3.1 8p21 Allelic losses (decreased expression) Encodes a prostate-specific homeobox gene essential 
for normal prostate development

Nkx3.1+/¡ and Nkx3.1¡/¡ mice manifest prostatic hyper-
plasia and dysplasia

PTEN 10q23.31 Allelic losses, mutations, probable CpG 
island hypermethylation (decreased 
expression, function, or both)

Encodes a phosphatase active against protein and lipid 
substrates

Pten+/¡ mice have prostatic hyperplasia and dysplasia
Prostatic intraepithelial neoplasia develops in 

Pten+/¡Nkx3.1+/¡ and Pten+/¡Nkx3.1¡/¡ mice
Prostate cancer with a poor prognosis develops in 

Pten+/¡TRAMP mice

CDKN1B 12p12–13 Allelic losses (decreased expression) Encodes p27, a cyclin-dependent kinase inhibitor
Cdkn1b¡/¡ mice have prostatic hyperplasia
Prostate cancer develops in Pten+/¡Cdkn1b¡/¡ mice

AR Xq11–12 Amplification, mutations (increased 
expression, altered function)

Encodes androgen receptor
Pb-mAR transgenic mice have prostatic hyperplasia, 

and prostatic intraepithelial neoplasia develops in 
them
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These interactions have been recapitulated in a
mouse model: although the targeted disruption of
Cdkn1b leads only to prostatic hyperplasia, prostate
cancer develops by three months of age in mice that
are heterozygous for Pten and have no Cdkn1b al-
leles.142,149

ar
Metastatic prostate cancer is usually treated with an-
drogen suppression, antiandrogens, or a combina-
tion of the two.150-152 Despite an initial response,
progression is inevitable, because of the emergence
of androgen-independent prostate-cancer cells. In
most androgen-independent prostate cancers, ex-
pression of the receptor and many aspects of its
function are maintained (Fig. 5).154-157 There is ev-
idence that receptors drive the proliferation of an-
drogen-independent prostate-cancer cells even in
the absence of androgens.158 Many somatic alter-
ations of AR have been detected in prostate cancers,
especially in those that progress despite hormonal
treatment.159-172 AR amplification, accompanied by
overexpression of androgen receptors, may pro-
mote the growth of androgen-independent pros-
tate-cancer cells by increasing the sensitivity of
prostate-cancer cells to low levels of circulating an-
drogens.160 In many AR mutations, the ligand-spec-
ificity of the receptor can be altered, permitting
activation by nonandrogens or even by antiandro-
gens.173-175 In a recent analysis of 44 mutant an-
drogen receptors from prostate cancers, 16 percent
had a loss of function, 7 percent maintained wild-
type function, 32 percent demonstrated partial func-
tion, and 45 percent displayed a gain of function.176

In the absence of AR mutations, androgen-inde-
pendent prostate cancer may progress through the
activation of ligand-independent androgen-recep-
tor signaling pathways.177-180

a molecular description 
of the prostate-cancer cell

The identification of key molecular alterations in
prostate-cancer cells implicates carcinogen de-
fenses (GSTP1), growth-factor–signaling pathways
(NKX3.1, PTEN, and p27), and androgens (AR) as
critical determinants of the phenotype of prostate-
cancer cells and defines specific targets for the de-
tection, diagnosis, and treatment of prostate cancer.
Although the drugs that are currently in use for the
treatment of prostate cancer disrupt androgen ac-
tion, in the future, new drugs that interfere with oth-
er growth-signaling pathways will be pursued.130

Chronic or recurrent inflammation probably has a
role in the development of many types of cancer in
humans, including prostate cancer.181 Symptomat-
ic prostatitis occurs in 9 percent or more of men
between 40 and 79 years of age; about half of these
men have more than one episode of prostatitis by
80 years of age.182 The prevalence of asymptomatic
prostatitis is not known.183,184 In most cases, no
causal infectious agent can be identified, which

prostatic inflammation 

and prostatic carcinogenesis  

Figure 3. Loss of GSTP1 Caretaker Activity in Prostate Cells and Increased Vul-
nerability to Genomic Damage Mediated by Carcinogens.

Dietary carcinogens, activated by liver cytochrome P-450 enzymes, and oxi-
dant carcinogens, elaborated by inflammatory cells (shown expressing the tri-
meric macrophage-scavenger receptor MSR1), can be detoxified in basal 
epithelial cells and in cells of proliferative inflammatory atrophy by the p-class 
glutathione S-transferase (GSTP1, shown as a dimer). Cells of prostatic intra-
epithelial neoplasia, devoid of GSTP1, undergo genomic damage mediated by 
such carcinogens. A red X indicates interception and detoxification of carcin-
ogens.
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makes it difficult to link symptomatic or asympto-
matic prostatitis with prostate cancer in epidemio-
logic studies. However, an increased risk of prostate
cancer has been associated with sexually transmit-
ted infections, regardless of the pathogen, suggest-
ing that inflammation, rather than infection, ini-
tiates prostatic carcinogenesis.185,186

Inflammatory cells elaborate numerous microbi-
cidal oxidants that might cause cellular or genomic
damage in the prostate.187,188 The decreased risk of
prostate cancer associated with the intake of anti-
oxidants or nonsteroidal antiinflammatory drugs
is consistent with this possibility.20,22-24,189-191

Two of the candidate prostate-cancer–susceptibility
genes identified thus far, RNASEL and MSR1, encode
proteins with critical functions in host responses to
infections.61,66,67,94

proliferative inflammatory atrophy
In 1999, De Marzo et al. proposed that a prostatic
lesion called proliferative inflammatory atrophy is a
precursor to prostatic intraepithelial neoplasia and
prostate cancer (Fig. 6).192 Focal areas of epithelial
atrophy have long been noticed in the prostate and
have been thought to be important in prostatic car-
cinogenesis.181,193 Such atrophic areas, containing
proliferative epithelial cells that fail to differentiate
into columnar secretory cells, tend to occur in the
periphery of the prostate, where prostate cancers
most commonly arise.153,192,194 The term “prolif-
erative inflammatory atrophy” applies to focal
atrophic lesions that are associated with chronic in-
flammation and are often directly adjacent to lesions
of prostatic intraepithelial neoplasia, prostate can-
cers, or both.153,192,195,196 Somatic genomic abnor-

Figure 4. Molecular Events in the Pathogenesis of Prostate Cancer.

In the normal prostate, NKX3.1, PTEN, and p27 regulate the growth and survival of prostate cells. Inadequate levels of PTEN (1) and NKX3.1 
(2) lead to a reduction in p27 levels (3) by a variety of mechanisms and to increased proliferation and decreased apoptosis (4). GF denotes 
growth factor, GFR growth-factor receptor, PIP3 phosphatidylinositol 3,4,5-triphosphate, PIP2 phosphatidylinositol 4,5-diphosphate, PI3K 
phosphatidylinositide 3-OH kinase, PTEN phosphatase and tensin homologue, Akt protein kinase B, PDK1 3-phosphoinositide-dependent 
protein kinase-1, PDK2 3-phosphoinositide-dependent protein kinase-2, and FKHR forkhead transcription factor. A red X indicates blocked 
processes and molecules that have not been produced, a dotted outline reduced levels of molecules, and an A the poly-A tail of messenger 
RNA. The question mark and dotted arrow in the left-hand panel represent the suspicion, not yet proven, that NKX3.1 interacts directly 
with Akt.
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malities, similar to those in cells of prostatic intra-
epithelial neoplasia and prostate-cancer cells, have
been found in cells in proliferative inflammatory
atrophy.196

The frequent association of lesions of prolifera-
tive inflammatory atrophy with chronic inflamma-
tion suggests that these lesions arise as a conse-
quence of the regenerative proliferation of prostate
epithelial cells in response to injury caused by in-
flammatory oxidants.192 Epithelial cells in lesions
of proliferative inflammatory atrophy show many
molecular signs of stress, such as high levels of
GSTP1, glutathione S-transferase A1 (GSTA1),
and cyclooxygenase-2 (COX-2).192,197,198 Loss of
GSTP1, probably as a result of hypermethylation of
the CpG island sequences of GSTP1, may define the
transition between proliferative inflammatory at-
rophy and prostatic intraepithelial neoplasia or
prostate cancer.105,107,195 Prostatic inflammation,

accompanied by focal epithelial atrophy, may also
contribute to the development of prostate cancer
in rats.199,200

Genes, dietary factors, and lifestyle-related factors
contribute to the development of prostate cancer.
Two inherited susceptibility genes, RNASEL and
MSR1, may have roles in responses to infections,
raising the possibility that prostate infection or
inflammation initiates prostatic carcinogenesis.
A new prostate-cancer–precursor lesion, prolifera-
tive inflammatory atrophy, may be another link be-
tween prostatic inflammation and prostate cancer.
Loss of the GSTP1 caretaker function, as cells of
proliferative inflammatory atrophy give rise to cells
of prostatic intraepithelial neoplasia and to pros-
tate-cancer cells, increases the prostate’s vulnera-

summary

Figure 5. Progression of Prostate Cancer to Androgen Independence during Treatment with Androgen Deprivation, Antiandrogens, or Both.

After therapeutic reduction in the levels of testosterone and dihydrotestosterone (1), the emergence of androgen-independent prostate can-
cer has been associated with mutations in the ligand-binding domain of the androgen receptor (AR) that permit receptor activation by other 
ligands (2), increased expression of androgen receptors accompanying AR amplification (3), and ligand-independent androgen-receptor 
activation (4).153 GFR denotes growth-factor receptor, PSA prostate-specific antigen, HSP heat-shock protein, P phosphate, SRD5A2 steroid-5-
a-reductase type II, and ARA70 androgen-receptor–associated protein 70.
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bility to genomic damage caused by inflammatory
oxidants and dietary carcinogens. Somatic targets of
genomic damage include NKX3.1, a candidate gate-
keeper gene, as well as PTEN and AR, genes that may
modulate the progression of prostate cancer. Inher-
ited polymorphic variants of genes mediating an-
drogen action, AR, CYP17, and SRD5A2, also influ-

ence the development and progression of prostate
cancer.
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